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Abstract

Background: Genetic study of quantitative biomarkers in Alzheimer’s Disease (AD) is a promising method to identify
novel genetic factors and relevant endophenotypes, which provides valuable information to deconvolute
mechanistic complexity and better understand disease subtypes.

Results: Using the data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we performed a genome-wide
association study (GWAS) between 565,373 single nucleotide polymorphisms (SNPs) and 16 key AD biomarkers from
1,576 subjects at four visits. We identified a novel locus rs5011804 at 12p12.1 significantly associated with several AD
biomarkers, including three cognitive traits (CDRSB, FAQ, ADAS13) and one imaging trait (fusiform volume). Additional
mediation and interaction analyses investigated the relationships among this SNP, relevant biomarkers, and clinical
diagnosis, confirming and further elaborating the genetic effects seen in the GWAS.

Conclusion: Our GWAS not only affirms key AD genes but also suggests the promising role of the SNP rs5011804
due to its associations with several AD cognitive and imaging outcomes. The SNP rs5011804 has a reported
association with adult asthma and slightly affects intracranial volume but has not been associated with AD before. Our
novel findings contribute to a more comprehensive view of the molecular mechanism behind AD.

Keywords: Alzheimer’s disease, Genome-wide association study, Quantitative biomarkers, Cognitive traits, Imaging
traits

Background
Alzheimer’s disease (AD) is a complex neurodegenera-
tive disease commonly characterized by memory impair-
ments, cognitive decline, and the presence of both tau
and Aβ [1]. There is an urgent need for developing effec-
tive strategies to discover new AD risk or protective
biomarkers for disease modeling and drug development
[2]. Genetics plays an important role in AD with esti-
mated heritability in the range of 58–79% [3–5]. Genome
wide association studies (GWAS) of case-control status
have only discovered about 30 independent genetic factors

*Correspondence: li.shen@pennmedicine.upenn.edu
1Department of Biostatistics, Epidemiology and Informatics, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, USA
Full list of author information is available at the end of the article

for AD susceptibility [6–8], which could not explain all
the heritability and thus requires scientists to explore
alternative search strategies for AD genetic determinants.
With the availability of large-scale genetics, imaging, cog-
nition and biomarker data in landmark studies such as
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[9–11], genetic analysis of multidimensional quantita-
tive traits (QT) in AD becomes an emerging and rapidly
growing research field [12–14]. The QT approach has dis-
tinct advantages in power over categorical diagnoses. For
example, genetic studies of AD imaging QTs have yielded
some prominent new findings [15–19], including a few
contributions to genetically based drug targets [18–21].
Specifically, there are a variety of cognitive, imaging

and other biomarkers that can serve as AD-associated
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QTs, such as Clinical Dementia Rating - Sum of Boxes
(CDRSB), Functional Activities Questionnaire (FAQ), and
the Alzheimer’s Disease Assessment Scale 13-item Cog-
nitive Subscale (ADAS13) and neuroimaging volumetric
measurements (e.g., those of fusiform and entorhinal cor-
tex measured by the FreeSurfer (FS) software) [22]. As
many of these measurements have been shown to accu-
rately depict some form ofmild or severe cognitive impair-
ment related with dementia [23–26], it is possible to find
a specific single nucleotide polymorphism (SNP) highly
associated with AD by finding an association between the
SNP and one or more indications of cognitive impair-
ments/dementia as determined by these measurements.
Finding associations between SNPs and AD as a whole

using specific QTs as a proxy is extremely useful for a
couple of reasons. First, these measurable biological prop-
erties are often (much) more strongly associated to the
pathogenesis of AD as a whole than a single, static diagno-
sis might be. Additionally, these quantitative continuous
variables can account for and depict an individual’s AD
status and neurological health more finely than a sin-
gle diagnosis can, and possibly implicate a disease sub-
type mechanism. Given the heterogeneity of AD, with
only one diagnosis code representing the wide range of
mild/intermediate cognitive impairments in addition to
the study’s case-control design, this single measure can-
not offer the same amount of insight into an individual’s
progression status that a QT in the form of a measur-
able biomarker can, making the many measurements and
calculations performed significantly less precise and pow-
erful. Lastly, these QTs are continuous measures and
statistically more powerful than case-control status, often
requiring much fewer samples for a genetic discovery.
This realization is fueled by the assumption that imag-
ing, cognitive and other QTs are closer to the inherent
neurobiology of the disease than a diagnosis itself; a pre-
vious study [27] has confirmed this assumption in show-
ing there are instances where common genetic variation
shows a stronger impact on brain structure than on risk
for neuropsychiatric disorders. As such, biologically rele-
vant variants that might not pass stringent multiple-test
corrections in the typical case-control studies described
here are more likely to be found in an associative study
using intermediate biomarkers like this one [28].
Previous studies using data from the ADNI cohort high-

lighted several key AD genes including APOE, TOMM40,
APOC1, BIN1, and CR1 [13] using AD diagnostic data.
However, it is possible such studies might have missed
some biologically relevant variants. Other studies have
replicated these findings using AD neuroimaging data
(including but not limited to [29–31]), fluid biomark-
ers (including [32–34]), or cognitive biomarkers (includ-
ing [35, 36]). However, not many studies have explic-
itly measured this larger spectrum of phenotypes across

individuals within the same cohort. To bridge this gap, in
this work, we perform GWAS analysis on a set of imag-
ing, cognitive and biomarker QTs in ADNI, which are
provided by the Quantitative Template for the Progres-
sion of AD (QT-PAD) Project (http://www.pi4cs.org/qt-
pad-challenge). The QT-PAD includes a set of longitudi-
nal key AD biomarkers for n = 1, 737 ADNI participants.
This large amount of normalized biomarker and detailed
diagnosis data, when combined with covariates including
age, gender and education level, allows researchers to per-
form significantly more powerful statistical analyses and
directly compare GWAS results studying different QTs
in AD. Additionally, given the major role the time plays
in AD, the ability to study the progression of the disease
over time and the corresponding genetic determinants is
especially useful.
In summary, although previous GWAS have found vari-

ous genetic variations that are highly associated with AD,
it is possible that certain biologically significant variants
that may not have survived the typical case-control study’s
corrected p value thresholds. As such, in this work, we
study a set of key AD QTs including a wide array of cog-
nitive, cerebrospinal fluid (CSF), and imaging biomarkers
involved in the QT-PAD project. Using this dataset allows
for 1) increased statistical power compared with case-
control GWAS studies; 2) the study of a wide variety of
leading AD biomarkers, to help de-convolute mechanistic
complexity and better understand disease subtypes; and 3)
additional longitudinal analyses, to study the progression
of the disease and the stability of the genetic determinants
over time. Our overarching goal is to not only confirm
the known AD genes but also identify novel AD genetic
findings.

Results
Targeted genetic association
GWAS highlighted the effect of rs5011804 at 12p12.1
with several biomarker QTs across all four studied time
points. The results of our analyses have been summarized
below in two series of heat maps. These figures display
all SNP-QT pairings across all four time points (rang-
ing from the baseline visit to two years later) with low
p-values, where significant pairings (P < 5 × 10−8, a
genome-wide threshold) are marked with a red ‘X’. The
first series (Fig. 1a through d) have age, gender, and educa-
tion as covariates while the second series (Fig. 1e through
h) consider age, gender, education, and genetic dosage of
APOE ε4 as covariates. The analyses that do not control
for APOE have 25 statistically significant SNP-outcome
pairings across all four time points; the analyses that do
control for APOE have 16 statistically significant SNP-
outcome pairings across all four time points. P-values
for the non-APOE analyses are as low as 1.879 × 10−14

(association with CDRSB at the month 12 time point),
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Fig. 1 Heatmap showing results of GWAS for bl, m06, m12, and m24 visit data. GWAS results on baseline QT-PAD biomarkers. Entries with
p < 5 × 10−8 (genome-wide significance threshold) are marked with X for each of the four visit codes: bl (a), m06 (b), m12 (c), and m24 (d). The
results of analyses with three covariates (age, gender, and education) are shown in a, b, c, d while the results of analyses with four covariates (age,
gender, education, APOE ε4) are shown in e, f, g, h

2.163×10−14 (association with FAQ at the month 12 time
point), and 8.211 × 10−14 (association with ADAS13 at
the month 12 time point). P-values for the analyses that
include APOE as a covariates are as low as 1.134 × 10−13

(association with CDRSB at the month 12 time point),
1.262 × 10−13 (association with FAQ at the month 12
time point), and 4.424× 10−13 (association with ADAS13
at the month 12 time point). One reassuring aspect of
our analyses is that in addition to showing the signifi-
cance of the novel SNP rs5011804 (Fig. 1), we have verified
the significance of several variants on chromosome 19
strongly associated with AD, including those from AD
genes APOC1, APOE, and PVRL2.
Of note, the SNP rs5011804 remains to be significant in

the GWAS that correct for APOE ε4 dosage as a covariate;
this confirms that the novel SNPs effect is independent
from those of APOE ε4 allele. All summary statistics from
our GWAS can be found in the Supplementary Material.

Association of rs5011804 with ADAS13, CDRSB, FS
Fusiform, and FAQ
To confirm the direction of the effect of the novel
locus, we examined a selection of the biomarkers that

were strongly associated with the SNP. The biomarkers
ADAS13, CDRSB, FS Fusiform, and FAQ had the smallest
additive p-values out of all measured QTs associated with
rs5011804, as evidenced by Fig. 2(a-d), and as such were
selected for further analysis.
Individuals with data for a specific biomarker were

sorted into one of three categories based on the number
of ‘C’ alleles associated with rs5011804 present (0, 1, or 2
copies). The average level of each of four biomarkers was
found for each of the three separate categories, which was
then plotted along with the standard error of the mean in
Fig. 2(a-d). To doubly verify the independence of the novel
SNPs effects from APOE ε4 dosage, the same procedure
was followed except for plotting the genetic dosage of the
APOE ε4 per individual versus the level of the phenotypic
biomarker in Fig. 2(e-h). Additionally, to account for the
violation of normality and variance homogeneity in our
data, we have plotted a figure similar to Fig. 2 depicting
the median and interquartile range instead of the mean
and standard error. This updated figure can be seen as Fig.
S3 in the Supplementary Material.
To determine the significance of the difference between

pairs of averages (i.e. between the average level of a
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Fig. 2 Top QT-PAD biomarkers associated with rs5011804 for all four time points (bl, m06, m12, m24). Mean CDRSB score (a), FAQ score (b), ADAS13
score (c), and FS Fusiform volume (d) were plotted against the number of copies for the ‘C’ allele possessed by an individual (a-d) and the genetic
dosage of APOE (e-h)

biomarker for individuals with no copies of the novel
allele and two copies, individuals with one and two copies,
and individuals with no and one copy), Cohen’s d values
and two-tailed t-test p statistics were computed (Table 1).
Similarly, to determine the significance of the difference
between pairs of averages (i.e. between the average level of
a biomarker for individuals with no copies of the APOE ε4
and two copies, individuals with one and two copies, and
individuals with no and one copy), Cohen’s d values and
two-tailed t-test p statistics were found (Table 2).
The moderately high Cohen’s d values and relatively low

two-tailed t test p statistics found, especially between indi-
viduals with no and two copies of the relevant minor ‘C’
allele, confirm the significant effect this SNP has. From
these visualizations, it is apparent that the rs5011804 ‘C’

allele is associated with higher CDRSB, ADAS13, and
FAQ scores, which are indicative of a significant cognitive
impairment commonly seen in individuals with AD. The
same allele is also associated with significantly lower val-
ues of the FS Fusiform biomarker, which is consistent with
the atrophy expected in neurodegenerative diseases like
AD.
In addition to evaluating the effect this SNP has on

biomarkers commonly associated with AD, we examined
the relationship between the SNP and the diagnosis at
each time point. This was done via a case-control lin-
ear regression analysis in PLINK v1.90 [37]. Individuals
with diagnoses of mild cognitive impairment (MCI) or
dementia (AD) were coded as cases while healthy controls
(HC) were coded as the controls. The resulting p-value
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Table 1 Mann-Whitney U Test P Values for Fig. 2(a-d)

Visit (Dosage) CDRSB P FAQ P ADAS13 P Fusiform P

bl (0 vs 1) 3.59e-6 1.37e-5 1.08e-4 6.56e-2

bl (0 vs 2) 2.81e-9 1.95e-8 3.01e-8 4.19e-3

bl (1 vs 2) 2.22e-3 2.63e-3 1.29e-3 2.47e-2

m06 (0 vs 1) 8.60e-6 1.23e-6 3.67e-5 2.11e-1

m06 (0 vs 2) 1.58e-11 1.09e-10 2.03e-10 4.39e-4

m06 (1 vs 2) 2.44e-4 5.69e-4 1.56e-4 2.37e-3

m12 (0 vs 1) 1.44e-7 6.34e-7 5.62e-6 1.71e-1

m12 (0 vs 2) 3.79e-10 7.35e-10 1.63e-11 7.55e-5

m12 (1 vs 2) 2.15e-3 2.30e-3 6.14e-5 4.19e-4

m24 (0 vs 1) 5.19e-4 3.26e-4 5.16e-3 2.52e-1

m24 (0 vs 2) 7.50e-8 1.13e-7 3.21e-7 5.12e-4

m24 (1 vs 2) 1.29e-3 1.87e-3 1.03e-3 2.94e-5

The index/leftmost column of the table represents the two specific allelic dosage
means being compared at a specific time point. For example, in the first row, the
differences in the average baseline levels for each of the four listed phenotypes
(CDRSB, FAQ, ADAS13, and FreeSurfer Fusiform) are compared between individuals
with 0 copies and 1 copy of the minor allele of the SNP rs5011804. The visit codes
have been abbreviated as follows: bl represents baseline measures, m06 represents
measures at the month 6 visit, m12 represents measures at the month 12 visit, and
m24 represents measures at the month 24 visits. A Mann–Whitney U test p value
threshold was determined using the Bonferroni correction, setting a threshold of
1.04 ∗ 10−3

was 1.47 × 10−3, which is significant given a standard
Bonferroni-corrected p-value threshold of 0.01.
To confirm the significance of these discrete differences,

a chi-squared test were performed for the data at each
time point. These tests rejected the null hypothesis that

Table 2 Mann-Whitney U Test P Values for Fig. 2(e-h)

Visit (Dosage) CDRSB P FAQ P ADAS13 P Fusiform P

bl (0 vs 1) 7.20e-21 6.65e-15 1.26e-22 4.08e-4

bl (0 vs 2) 1.85e-23 4.21e-15 6.82e-25 1.11e-2

bl (1 vs 2) 5.12e-5 2.77e-3 1.22e-4 4.31e-1

m06 (0 vs 1) 1.26e-20 9.61e-16 9.21e-20 2.47e-6

m06 (0 vs 2) 4.70e-25 1.84e-21 4.15e-25 9.68e-4

m06 (1 vs 2) 3.69e-5 3.51e-5 3.23e-5 1.51e-1

m12 (0 vs 1) 5.43e-17 2.81e-17 1.21e-12 8.42e-4

m12 (0 vs 2) 2.97e-20 4.69e-18 7.29e-25 8.60e-2

m12 (1 vs 2) 1.24e-4 9.54e-4 6.87-5 1.41e-1

m24 (0 vs 1) 1.72e-16 3.10e-18 1.05e-20 1.34e-3

m24 (0 vs 2) 9.06e-22 2.10e-19 1.98e-21 6.57e-3

m24 (1 vs 2) 8.18e-6 2.18e-4 6.54e-5 3.85e-2

The index/leftmost column of the table represents the two specific allelic dosage
means being compared at a specific time point. For example, in the first row, the
differences in the average baseline levels for each of the four listed phenotypes
(CDRSB, FAQ, ADAS13, and FreeSurfer Fusiform) are compared between individuals
with 0 copies and 1 copy of the minor allele of the APOE ε4 allele. A Mann–Whitney
U test p value threshold was determined using the Bonferroni correction, setting a
threshold of 1.04 ∗ 10−3

the genetic dosage at each time point is independent from
the AD diagnosis with p < 1.00 × 10−5 for the bl, m06,
and m12 visit codes and p = 4.77× 10−4 for the m24 visit
code.

Mediation analysis
Several statistically significant SNP-QT associations
(highlighted in Fig. 1(a-d) across all four time points) were
found to exhibit a mediation effect. Here the SNP (the
independent variable) influences the QT (the mediator
variable), which in turn influences the diagnostic outcome
(the dependent variable). The proportion of the mediat-
ing effect of the QT was calculated and shown in Fig. 3. In
this figure, we plot the proportion of the mediation effect
calculated against the visit code in question to show the
progression of this proportion over time, which both high-
lights the significance of these effects and confirms the
impact of our SNP. We chose to specifically focus on QT
outcomes with at least a statistically significant effect at
three or more visit codes to ensure significance. Our mea-
surements show that the CDRSB outcome has the largest
proportion of the mediating effect. All effects shown and
found are consistent with what would be expected in the
case of a cognitive dysfunction such as Alzheimer’s.
This specific analysis serves to show that the effect this

SNP has on an individual’s AD diagnosis goes through
these significant QTs. The discovered QTs mediate the
effects of AD candidate variants on disease, which may
not be directly detected from the SNP-QT association
analysis performed earlier. To the best of our knowledge,
this is among the first analysis in AD studies to look
for QTs mediating genetic effects on AD diagnosis. We
have identified multiple QT mediators linking the SNP to
the diagnosis, showing the promise this SNP may have
a causal mechanism through these QTs to influence AD
diagnosis.

Interaction analysis
Our interaction analysis found seven specific SNP-by-
diagnosis interaction relationships of statistical signifi-
cance determined via a Bonferroni correction. Six cog-
nitive and one imaging QTs exhibited such an effect, as
shown in Fig. 4. Among these findings, similar interac-
tion patterns are found on all six cognitive QTs, including
FAQ measures (at m06, m12 and m24), CDRSB mea-
sures (at m12), MMSE measures (at m12) and ADAS13
measures (at m24). Specifically, for these cognitive QTs,
while the SNP rs5011804 demonstrates either an addi-
tive effect or no effect in both NL and MCI diagnostic
groups, it shows a heterozygous effect in the AD group,
where heterozygous AD patients (i.e., allelic dosage = 1)
have the smallest or largest mean FAQ, compared with
homozygous AD patients. In contrast, a different interac-
tion pattern is shown on the only imaging QT finding. For
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Fig. 3 Visualizing the proportion of NDE/NIE versus visit code per QT-PAD outcome. Using the results of the mediation analysis, we plotted the
proportion of the natural direct effect (NDE) versus the natural indirect effect (NIE) over time per outcome. Outcomes with a significant NDE and NIE
have been marked with a red ‘X‘; the horizontal color bar represents the SNPs for which the mediation effect has been measured. Although the
primary findings are focused on rs5011804, the mediation effect coefficients for three other AD SNPs are shown here for reference

MidTemp measures (at m12), the SNP rs5011804 shows
an additive effect in both MCI and AD groups, and shows
a heterozygous effect in the NL group.

Discussion
Our GWAS analysis of targeted AD biomarkers dis-
covered a novel SNP rs5011804 at 12p12.1 associated

with measures of several quantiative biomarkers in 1,576
members of the QT-PAD cohort. Our post-hoc stratified,
mediation, and interaction analyses have yielded a few
observations as follows. First, this effect is independent
of common AD risk APOE ε4. Second, there is a mediat-
ing effect between the SNP and an individual’s AD status
through a collection of key biomarkers. Finally there exist

Fig. 4 rs5011804-by-diagnosis interaction analysis visualizations. The diagnosis × allelic dosage of the novel SNP rs5011804 was plotted against the
average level of biomarker for each of several diagnostic and imaging biomarkers. Adjacent to each graph shown in red is the relevant p-value of
the interaction effect found. Additionally, a similar figure showing the median and interquartile range has been made and is available in the
Supplementary Material (Figure S4)
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strong SNP-by-diagnosis interaction effects on a few AD
biomarkers.
A genome-wide association study has implicated that

our novel SNP is highly associated with several AD quanti-
tative traits (QTs) with p < 5.00×10−8. To our knowledge,
this is the first time this SNP has been reported to be
strongly associated with AD.
Previously, this SNP has been strongly associated with

adult-onset asthma after correcting for smoking habits
[38]. The ENIGMA2 project has previously found that
rs5011804 has a borderline association with the intercra-
nial volume (ICV) with a p = 0.05934 [39]. In their
late-onset AD GWAS, Kunkle et al. included rs5011804
in their analyses but did not find that it had a statistically
significant effect p = 0.7015 [6].
To better understand the function of the region of chro-

mosome 12 rs5011804 is in, we attempted to find other
SNPs in the same LD block. Using the SNPStats R library
[40], we searched for all SNPs within a 1 Mb range that
were in linkage disequilibrium with rs5011804, as defined
by D′ ≥ 0.8, r2 ≥ 0.8, GWAS p ≤ 0.05. No SNPs were
found to be in linkage disequilibrium with rs5011804.
Although rs5011804 is not in linkage disequilibrium

with any other currently-recognized SNPs, it is located
between genes KRAS (distance ≈ 38 KB) and LMNTD1
(distance ≈ 75 KB). KRAS is an oncogene that produces
K-Ras, a GTPase associated with the RAS/MAPK path-
way, which is instrumental in cell growth and differenti-
ation. As such, KRAS has been shown to be associated
with disorders including lung cancers and cholangiocar-
cinoma [41]. LMNTD1, also commonly referred to as
PAS1C1, is a protein-encoding gene involved in cell pop-
ulation proliferation that is also associated with lung
cancer [42].
To gain more insight into the potential regulatory role

of rs5011804, data from the Genotype-Tissue Expres-
sion (GTEx) Project was studied. The data analyzed was
sourced from the GTEx Portal on 11 November 2020.
There were no significant variant-gene associations found
in any of the provided brain tissues.
In addition to examining the novel SNP, it is essen-

tial to discuss the multiple QTs involved in this study.
Multiple QTs associated with the SNP and included in
the original QT-PAD dataset are strongly linked with
AD, and as such, it both makes sense and is expected
that a SNP highly associated with some of these QTs
would also have a strong association with AD directly.
For example, the biomarkers ADAS13, FAQ, CDRSB,
MMSE, and RAVLT.learning are diagnostic scales com-
monly used by physicians to quickly assess a patient’s
mental status and can accurately differentiate between
healthy individuals from those withmild cognitive impair-
ments or severe dementia [23–25, 43, 44]. The biomarkers

FDG PET, Amyloid PET, FS WholeBrain, FS Hippocam-
pus, FS Entorhinal, FS Ventricles, FS MidTemp, and FS
Fusiform are either molecular imaging measurements or
neuroimaging volumetricmeasurements; previous studies
have shown that specific neurological abnormalities can
be an effective and accurate way to diagnose a patient
with AD [26, 45, 46]. The final three remaining biomark-
ers included in QT-PAD – CSF ABETA, CSF TAU, and
CSF PTAU – are measurements of Aβ42 and other pro-
teins that are among the best indicators for AD [22]. Given
their high association with AD and quantitative nature,
these biomarkers are excellent outcomes variables to use
in GWAS.
With the advent of Big Data, genome-wide association

studies have quickly became themost commonly accepted
method to analyze genetic data in order to learn about
the genetic etiology of complex diseases. As helpful and
implicating as GWAS may be, however, it is necessary to
remember that these studies are purely associative.
As such, it is usually necessary to employ additional

procedures to confirm and further elaborate the genetic
signal(s) seen in the GWAS.
The use of two post hoc analyses in the case of this

study attempts to do so. Specifically, on one hand, we
performed mediation analysis and discovered multiple
imaging and cognitive traits that mediate the SNP effect
on the diagnosis, showing the promise the SNP rs5011804
may have a causal mechanism through these traits to
influence AD diagnosis. On the other hand, we performed
a subsequent SNP-by-diagnosis interaction analysis on
the studied biomarkers, and revealed several differential
SNP-biomarker association patterns in different diagnos-
tic groups. These findings have great potential to help
deconvolute mechanistic complexity and better under-
stand disease subtypes.
This study does not claim to prove there is a definite,

unambiguous causal relationship between the novel SNP
rs5011804 and an AD diagnosis. Determining all of the
multiple biological and environmental factors of an AD
diagnosis would require several more studies. Although
significant in our cohort, it is necessary for this SNP
and the QT’s studied to be examined in the context of
other non-Caucasian and European ethnic groups. Fur-
ther replication studies can confirm if this SNP, along with
some of the implicated neuroimaging biomarkers, could
help hint at a potential AD mechanism-of-action worth
studying. As the SNP both has a significant effect on AD
diagnosis through several AD outcomes measured (seen
in the mediation analysis) and exhibits a significant effect
on AD outcomes when combined with an individual’s
diagnosis (as demonstrated in the interaction analysis),
perhaps the SNP may assist in determining an individual’s
risk for AD in the future.
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Conclusions
In conclusion, we discovered a novel locus rs5011804 at
12p12.1 significantly associated with levels of CDRSB,
FAQ, FS Fusiform, and ADAS13 at multiple studied time
points including the baseline, month 06, month 12, and
month 24 visits in the ADNI cohort. This locus was also
found to be strongly associated with an AD diagnosis.
Post hoc mediation and interaction analyses confirmed
and elaborated the results of our GWAS. In particular,
the genetic effect of this SNP on the AD phenotype is
mediated by multiple quantitative biomarkers, suggesting
possible causal mechanisms from the SNP to biomarkers
and to the diagnostic outcome. In addition, differential
SNP-biomarker association patterns are identified in dif-
ferent diagnostic groups, providing valuable information
for mechanistic understanding of the disease and hetero-
geneity. This SNP has never been associated with AD
before, and our findings may help lead to a more compre-
hensive view of the molecular mechanism behind AD.

Methods
All methods were performed in accordance with the rel-
evant guidelines and regulations. Data were downloaded
and analyzed under approval of the University of Penn-
sylvania Institutional Review Board. An overview of the
procedure for this study is shown in Fig. 5. Briefly, after
identifying four specific time points to examine data for,
multiple GWAS were performed using 1,576 individu-
als from the QT-PAD cohort and using 16 QTs included
in QT-PAD. We performed two sets of these GWAS:
one set included APOE ε4, age, gender, and education
as covariates; and the other included just age, gender,
and education as covariates. After these GWAS, we also
performed mediation analysis between the SNP and diag-
nosis using a QT-PAD biomarker as the mediator variable,

and interaction analysis measuring the SNP-by-diagnosis
interaction effect on the QT-PAD biomarkers.

Alzheimer’s disease neuroimaging initiative QT-PAD data
Data used in this analysis was obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [47]. ADNI was launched in 2003 as a public-
private partnership led by Principal Investigator Michael
W. Weiner, MD to test whether serial MRI, PET, and
biological markers can be combined with clinical and neu-
ropsychological assessments to accurately measure the
progression of mild cognitive impairment (MCI) and early
AD. For up-to-date information, see http://www.adni-
info.org.
Participants included individuals who were members of

ADNI 1/GO/2 cohorts, as described by the ADNI QT-
PAD project (Fig. 5 Box (a)). Please refer to [48] for details
about the QT-PAD data and how participants were cho-
sen. Table 3 shows the 16 AD outcomes included in the
QT-PAD. To reduce the likelihood of population stratifi-
cation effects, only non-Hispanic Caucasian participants
were involved in this study. As such, there were 1,576
individuals who were studied in each of the four time
points. 461 of these individuals are healthy controls (HC)
and the remaining 1,115 individuals had either an MCI
or AD diagnosis. Demographic data about the individuals
included in our analyses can be found in Table 4.
Genotyping data (Fig. 5 Box (b)) were quality-

controlled, imputed using 1000G data, and combined
as described in [49, 50]. Briefly, genotyping was per-
formed on all ADNI participants following the manu-
facturer’s protocol using blood genomic DNA samples
and Illumina GWAS arrays (610-Quad, OmniExpress, or
HumanOmni2.5-4v1) [51]. Quality control was performed
in PLINK v1.90 [37] using the following criteria: 1) call

Fig. 5Workflow. A schematic workflow of the analyses performed in this study

http://www.adni-info.org
http://www.adni-info.org
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Table 3 Description of QT-PAD outcomes/biomarkers, their
abbreviations, and categories

Abbreviation Outcome/Biomarker Description Category

ADAS13 Alzheimer’s Disease Assessment
Scale - Cog 13

Cognition

CDRSB Clinical Dementia Rating - Sum of
Boxes

Cognition

RAVLT.learning Rey Auditory Verbal Learning Test Cognition

MMSE Mini-Mental State
Examination/Folstein Test

Cognition

FAQ Functional Activities Questionnaire Cognition

FDG PET Fluorodeoxyglucose Positron
Emission Tomography

PET

Amyloid PET/AV45 Amyloid Positron Emission
Tomography

PET

CSF ABETA Cerebrospinal Fluid Beta-Amyloid
42

CSF

CSF TAU Cerebrospinal Fluid Tau CSF

CSF PTAU Cerebrospinal Fluid
Phosphorylated Tau

CSF

FS WholeBrain FreeSurfer Whole Brain Volume MRI

FS Entorhinal FreeSurfer Entorhinal Cortex
Volume

MRI

FS Ventricles FreeSurfer Ventricular Volume MRI

FS MidTemp FreeSurfer Middle Temporal Gyrus
Volume

MRI

FS Fusiform FreeSurfer Fusiform Volume MRI

FS Hippocampus FreeSurfer Hippocampus Volume MRI

rate permarker≥ 95%, 2)minor allele frequency (MAF)≥
5%, 3) Hardy Weinberg Equilibrium (HWE) test P ≤1.0E-
6, and 4) call rate per participant ≥ 95%. In this study,
we analyzed the genetic markers available on the ADNI-
1 610-Quad panel, where a total of 565,373 SNPs were
included in the GWAS.

Table 4 ADNI QT-PAD Participant Characteristics. Gender, age (in
years), education (in years), and genetic dosage of the APOE ε4
allele at the baseline are shown

Diagnosis HC MCI AD N/A

Number 461 797 312 6

Gender (%
Female)

49.67 40.15 42.95 66.67

Age (Mean±std) 74.47±5.68 73.09±7.54 75.18±7.79 72.15±8.29

Education
(Mean±std)

16.42±2.65 16.00±2.82 15.24±2.96 16.75±1.50

APOE ε4 Dosage
(Mean±std)

0.31±0.51 0.62±0.68 0.85±0.71 0.25±0.50

Individuals have been sorted into strata depending on their diagnosis at the
baseline visit: healthy control (HC), mild cognitive impairment (MCI), Alzheimer’s
Disease (AD), or not applicable for individuals who do not have baseline diagnosis
data enclosed (N/A). The mean and standard deviation (std) are provided for the
quantitative measures

Genome wide association studies
To analyze data from multiple time points, multiple
GWAS (Fig. 5 Box (c)) were performed, with one anal-
ysis per each of the four time points bl, m06, m12, and
m24, which represented the baseline, month 6, month 12,
and month 24 visits. Due to the large extent of ADNI as
a whole and the difficulties each individual patient might
have had, not every patient has a recorded value in QT-
PAD stored for each of the 16 biomarkers at each visit.
To ensure our analyses to have enough statistical power,
we only studied time points with a minimum of 200 indi-
viduals. As such, our analysis was limited to the four
aforementioned time points.
Targeted genetic association analysis of each of the 16

AD biomarkers at each of the four listed time points on the
565,373 SNPs was tested using linear regression under an
additive genetic model in PLINK v1.90 [37]. Initially, age,
gender, and education only were used as covariates in our
GWAS. To correct for the effects of APOE ε4 status (best
knownAD genetic risk factor), GWASwas also performed
using the exact same data with age, gender, education,
and APOE ε4 dosage as covariates. For both trials, sig-
nificant SNP-QT associations were reported using the
genome-wide significance threshold of p ≤ 5.00 × 10−8.

Mediation analysis
Given the dynamic nature of Alzheimer’s disease, a cohort
may have a varying distribution along the HC-MCI-AD
spectrum as seen through varying biomarker levels and
changing diagnoses. In the context of a GWAS, having a
dynamic phenotype but a static genetic basis over time
can seem contradictory, allowing for the possibility of cer-
tain genetic factors being significantly associated with an
AD diagnosis or biomarkers closely linked to AD at one
time point but not another. In order to accommodate such
an effect and verify the highlighted SNP indeed plays a
role in AD diagnosis and outcomes at all significant time
points, we propose a mediation analysis.
A mediation analysis seeks to identify and explain

the mechanism of the quantified relationship between
rs5011804 and an AD diagnosis via examining the medi-
ating effects of the various ADNI QT-PAD biomarkers
discussed (see Fig. 6). Specifically, a mediation analysis
will allow us to determine if an independent variable (the
SNP rs5011804) affects a dependent variable (an individ-
ual’s AD diagnosis) ‘through‘ one of mediator variables
(our biologically-motivated AD outcomes). Since many of
these QT-PAD outcomes and biomarkers have distinct
biological ties to the disease itself, a mediation analysis
would both hint at a causal relationship between SNP and
diagnosis as well as hint at a possible mechanism of action,
drug target, or region of interest (ROI). Below we sum-
marize the specific mediation analysis performed (Fig. 5
Box (f )). For each time point, we followed [52] to perform
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Fig. 6Mediation analysis. Our mediation analysis aims to determine if an independent variable (SNP rs5011804) affects a dependent variable
(diagnosis) ‘through’ a mediator variable (QT-PAD biomarker), where age, gender and education are included as covariates. The direct effect is the
path coefficient c′ . The indirect effect is the path coefficent product a × b

a standard mediation analysis to identify key biomark-
ers included in QT-PAD as potential disease moderators.
Figure 6 shows a brief graphical summary of this method.
Let y ∈ {1, 2} be the dependent variable which rep-

resents the diagnostic phenotype in the study, with 2
representing a case (diagnosis of either MCI or AD) and
1 representing a healthy control; x ∈ {0, 1, 2} be the inde-
pendent variable which represents the allelic dosage of the
minor allele ‘C’ in our identified SNP rs5011804, with 2
signifying an individual has two copies of the minor allele,
1 signifying an individual has one copy of the SNP, and 0
signifying the individual does not carry the variation; z be
the covariates (age, gender, and education but not APOE
ε4 dosage); and M be the set of significant biomarkers at
each of the four time points as indicated by the previous
GWAS. Mediation analysis was performed via the three
steps below:
Step 1:We use a logistic regression model to regress an

individual’s diagnosis y against the SNP xwhile controlling
for the covariates z.

logit (Pr (y = 2)) = β11x + β12z + ε1 (1)

Coefficient β11 should be significant (p-value < 0.05) to
pass this first step.
Step 2: We use a linear regression model to regress

each of the potentially mediating biomarkers denoted mi
(i.e., mi ∈ M) against the SNP x while controlling for the
covariates z.

mi = β21,ix + β22,iz + ε2,i (2)

We only use the SNP rs5011804 – and therefore continue
with this post hoc analysis – if it meets the significance
threshold of 0.05. Coefficient β21,i should be significant

after correcting for the multiple biomarkers; we correct
our p-value threshold using a Bonferroni correction. As
such, given that the number of biomarkers at each step
differ, we have a threshold of 0.05

7 = 7.14 × 10−3 for the
baseline data, a threshold of 0.05

6 = 8.33 × 10−3 for the
m06 and m12 data, and a threshold of 0.05

4 = 1.25 × 10−2

for the m24 data.
Step 3: We use a logistic regression model to regress

an individual’s diagnosis y against the SNP x and each
mediating biomarker phenotype mi, controlling for the
covariates z.

logit (Pr (y = 2)) = β31,ix + β32,imi + β33,iz + ε3,i (3)

Note that this step is only performed using all mediat-
ing phenotypes that satisfy the conditions of the previous
step. To adjust for multiple comparisons, we again employ
the Bonferroni correction to our significance threshold
using the number of mediators surviving the previous
step. For any given mediating biomarkermi, there is likely
a mediating relationship if:

(1) β32,i is statistically significant as deemed by our
Bonferroni-corrected threshold

(2) |β31,i| < |β11| (from Step 1, above). In other words,
an indirect effect must be present between our
dependent variable and our independent variable
through our mediator.

Next, it is possible to compare the multiple mediation
effects we have isolated as introduced in [53]; see also
Fig. 6.We have also calculated the proportion of the Natu-
ral Direct Effect (NDE), which is expressed as β31,i, to the
Natural Indirect Effect (NIE) β32,i × β21,i.
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This analysis was performed for all significant SNP-QT
associations from our GWAS.

Interaction analysis
Lastly, in addition to examining the main effect of the
SNP on the 16 QT-PAD outcomes, we also perform a
SNP-by-diagnosis analysis on these QTs (denoted LQT ).
We primarily consider the novel SNP rs5011804, model-
ing its allelic effect xa by coding the genotypes as xa =
0, 1, 2. Similarly, we code an individual’s diagnosis as xd =
0, 1, 2, with HC individuals being coded as 0, individu-
als diagnosed with MCI as 1, and individuals with an AD
diagnosis being coded as 2. By multiplication, we obtain
the interaction term xaxd which represents interaction
between the allelic effect of the SNP and an individual’s
diagnosis.
As such, we employ the following model to measure the

interaction effect xaxd while also controlling for age (cage),
gender (cgen), and education (cedu).

LQT = β0+β1xa+β2xd+βintxaxd+cage+cgen+cedu (4)

We wish to determine the significance of βint . Given
that we are building multiple models, we use a Bonferroni
correction to filter out false positives. As we examine QTs
from each time point separately, the Bonferroni threshold
is calculated as 0.05 divided by the number of statistically
significant QTs in a specific visit as determined by the
calculations above. Inspiration for this model was taken
from [54].
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